Doctors in Dependency Cases
Use of an “Expert”

• Definition
 – “Anyone who knows more than I do”
 – Artificial Intelligence

• There to provide information

• There to educate

• Not there to advocate
Doctors

• Medical Education
 – Four years
 – US schools vs. non US schools

• Internship
 – Become licensed after passing Part 3 of Medical Board

• Residency
 – Variable length of training
 • Orthopedic Surgery 5 years
 – Fellowship – additional training
Doctors

• Board certification
 – Not one national certifying board
 – American Board of Medical Specialties

• Continuing Medical Education
 – Re-certification
 – Maintenance of Certification
Doctors in Dependency Cases

• What they are:
 – Interpreters of the medical facts
 – Trained Observers
 – Schooled in Science, not law
 • What “could” have happened, not what “more probably than not” did happen
 – Medical Opinion
 • Defined by the “basis” for that opinion
 • “Basis” means facts / observations / interpretation of data
Doctors in Dependency Cases

• What they are *Not*:
 – Triers of fact
 – Knowledgeable of legal terms
 – Able to take sides
 • Bias does not apply to data
 – Able to extend opinion beyond set of facts
 – Easy to deal with
Utilizing Doctors in Dependency Cases
How Doctors can Help

• Identify / describe patterns of injury
 – Fractures, burns, bruises, retinal hemorrhaging

• Assemble a Timeline of injuries
 – Need serial data points to be most specific
 – Did injuries occur at the same time
 – Using information from multiple sources

• Put history of injury into context
 – Could the injuries have occurred as described?
 – Pointing out what doesn’t fit equally as important as corroborating history
Putting Patterns into Context

- Childs age / weight
 - Pediatrician charts important
- Metabolic status
 - Catabolic vs. Anabolic state
- Congenital anomalies
 - Clavicle, tibia congenital non-unions
- Inheritable diseases
 - Osteogenesis Imperfecta
- Birth related issues
 - Small for gestational weight
 - Neonatal Ricketts
Collecting the Data

• Primary Survey
 – Collect data from first ER contact
 – Records, Lab, X-rays / Images, scans
 – Consultations
 • Ophthalmology
 • Neurology
 • Neurosurgery
 • Orthopedic Surgery
 • Hematology
 • Plastic Surgery (Burns)
Collecting the Data

• Secondary Survey
 – Repeat Skeletal Survey at 2 weeks
 – MRI
 – Bone Scan
 – Operative Reports
 – Follow up consultations

 OES 900 exams
 Patient
 Siblings
What Helps / What Doesn’t

• Helpful
 – Petition included
 – Scans on CD include all studies
 • Head CT – need bone “windows”
 – Expert Opinion reports
 – If less than 3 months old
 • Birth Records
What Helps / What Doesn’t

• Not as Useful
 – Police reports
 – Live Scans
 – Prior NAT reports / allegations
 – Social worker interviews with treating doctors
 – Sibling medical records
Utilizing Experts

• Report the facts
 – Facts form basis of Opinions
 • Differentiate actual from possible
 – Secondary data key

• Establish Timelines of Injury
 – Clues to aging of injuries
 • Callus formation – long bones
 • Soft Tissue Swelling – skull fractures
 • Bruise patterns of healing
 – Purple to red to yellow / green
Utilizing Experts

• Identifying patterns of injury
 – SDH, retinal hemorrhaging, MCFs, posterior rib fractures

• Explain Pathophysiology of Injuries
 – Spiral fracture
 – Transverse fracture
 – Oblique fracture
 – Tool marks
 – Burns
 – Bruise / hematoma / hemorrhage
Utilizing Experts

• Interpreting Reports
 – What data was used for the basis of the opinion(s)
 – When was the report prepared
 • Pre-secondary survey
 – How was the data obtained
 • First hand vs. second hand
 • Did they actually review the films independent of another expert or not
 • Primary source verification
Differentiating Experts

• Sub Specialty
 – Radiologist vs. Orthopedic Surgeon

• Experience / Education

• What was reviewed
 – Primary source verification
 – Reliance on records / consultations

• Verify with secondary survey
Utilizing Experts

• Building a case
 – Series of opinions based upon interpretation of data sets

• Pre Trial Opinion letters
 – What was reviewed
 – Opinions
 – Basis for those opinions

• If left untreated
 – Disfigurement, Dysfunction, Deformity
 – Death
Utilizing Experts

• Trial Testimony
 – Never a surprise
 – Explain opinions / basis for opinions
 – Never biased or judgmental
 – Never combative
 – Use props as necessary to make a point
 • Posterior rib fractures
 – Explaining x-rays / scans helpful to demonstrate depth of knowledge / understanding
Common Myths and the Truth
Myths

• Certain injuries are “classic” for non accidental trauma
 – Patterns can be characteristic of NAT
 – Individual injuries are rarely characteristic

• Need to understand “Classic” or “path gnomonic” signs of abuse
“Classic” Fractures
Non-Accidental Trauma

- Metaphyseal Corner Fractures
 - Distal femur / Proximal tibia
- Rib fractures
 - Bilateral, posterior paraspinal
 - Ribs 4 to 9 most common
 - 4 or greater “high risk” of death
- Spiral Fractures
 - Humerus / Femur
 - Distal part of spiral points to direction of twist
- Skull Fractures
 - Parietal most common
 - Epidural hematoma vas subdural hematoma
“Classic” Fractures
Non-Accidental Trauma

- Metaphyseal Corner Fractures
 - “Classic metaphyseal lesion”
 - End of the bone
 - Adjacent to the growth plate
- Described by PK Kleiman, MD 1986 article
- Significant debate about callus formation
 - Up to 1/3 – no callus
“Classic” Fractures
Non-Accidental Trauma

• Rib fractures
 – Posterior versus lateral
 • Squeeze versus direct trauma
 • Anterior posterior force versus lateral compression
 • Clavicles are protected

• May be very hard to see initially
 – Usually picked up in the healing phase

• 4 or more are associates with significant chance of death
“Classic” Fractures
Non-Accidental Trauma

• Spiral fractures
 – Fracture morphology is related to how the force is applied
 – Transverse fractures are bending moments of force
 – Spiral fractures are rotational moments of force

• Oblique fractures are a combination of the two
“Classic” Fractures
Non-Accidental Trauma

• Skull fractures
 – Heaviest part of a baby
 – Parietal fracture is most common
 – “too many lines sign”
 • Have to differentiate from normal skull sutures

• Overlying hematoma is best way to date fracture
 – Galeal fascia (scalp) overlies the skull
 – Swelling maximal in 24 to 48 hours, gone in 5 to 7 days
 – Look for tool marks
Brain Hematomas

• Three layers of the brain
 – Dura Mater
 • Thick outer covering
 – Arachnoid Mater
 • Thin “spidery” layer
 – Lots of blood vessels
 – Can have spontaneous hemorrhage
 – Pia Mater
 • Thinnest layer
 • Most Delicate
Brain Hematomas

• Epidural Hematoma
 – Outside the dura, beneath the skull
 • Frequently associated with skull fractures (parietal)
 • Common with being dropped
 – Outside in trauma

• Subdural hematoma
 – Beneath the dura
 • May become Hygroma (fluid tumor)
 • Associated with acceleration / deceleration
 • May be acute or chronic
 • May be caused by meningitis

• Intra-parenchymal bleed
 – Within the brain
 – Causes scarring / long term lesions
Shaken Baby Syndrome

• Association of Shaking / Squeezing
 – Subdural hematoma
 – Retinal Hemorrhages
 • Other etiologies – meningitis, CPR
 – Symmetric posterior Rib fractures
 – Associated with Metaphyseal Corner Fractures
 – Blunt abdominal trauma
 • Look for elevated enzymes

• Specific pathologic entity – first described in 1972
 – 60% involve boys
 – Most common under 1 year of age

• Need to rule out bleeding disorder
 – Factor XII, Factor VIII
“Classic” Fractures
Accidental Trauma

• Toddler’s Fracture
 – Spiral fracture of tibia
 – Intact Fibula

• Torus Fracture
 – Distal radius / tibia

• Supracondylar Humerus fracture
 – Extension pattern, transverse

• Forearm mid-shaft fractures
 – May be occult
 – Both bones always involved
Cross Examination Tips
Cross Examination Tips

• Obtain pre trial reports and have them reviewed for accuracy
 – Identify opinions based on primary source verification versus reliance on other sources

• Understand the basis for opinions at time of trial
 – Expose gaps in theories
 – In x-ray reports look to the “findings” section versus the “conclusion” section
Cross Examination Tips

• Use checklist to make sure all available data is present
 – Make sure secondary skeletal surveys were done
 • If not, why?
 • Use hypothetical to make points
 – If rib fractures are subtle
 • Was bone scan done?
 – Metaphyseal Corner Fractures
 • Can be confirmed by MRI
Cross Examination Tips

• Do not dwell on “interpretation” opinion
 – Attack basis for that opinion
 – If the basis is false, opinion is not as strong

• Focus on whole picture
 – Identify and analyze patterns or specifically lack of patterns of abuse
 – Rare that one injury denotes a pattern
Fracture 101
Fracture Healing

- **Bone is Alive**
 - Blood Supply from both intra-medullary and periosteal sources

- **Age determines metabolic rate**
 - The younger the patient, the faster the process

- **Consistent healing Pattern**
 - Stages of healing
 - Acute versus chronic
 - Allow aging of the fracture pattern
Fracture Healing

• Acute fracture
 – May or may not swell

• Early Callous Formation
 – Appears at 5 to 7 days

• Mature Callus
 – Fracture line disappears at about 4 weeks

• Re-modeling
 – May take years
 • The younger, the better
Bone 101

- Children Grow through growth plates on the end of the bone
 - Tube of tooth paste
- Fractures remodel best at the ends of the bone
- Angular deformities correct in the plane of the joint
Bruises

• Caused by hemorrhage into the skin
 – Small vessels rupture
 – Can be caused by anything disrupting those vessels
 • Petechiae – small punctate hemorrhages
 – May be caused by emboli
 • Can occur in internal organs
 – Thymus gland in the neck
Bruises

• Resolve by reabsorption
 – Blood products brake down
 • Porphyrins
 – Blood pigments
 Blue to red to green to yellow

• Able to date “loosely” by color
 – Depends on metabolic status
 – Depends on nutrition
Retinal Hemorrhages

• Key link

• Bleeding involving small vessels at back of the retina
 – Caused by increase / decrease in pressure
 – Can be unilateral
 – Associated with traumatic brain injury
Retinal Hemorrhages

• Can it be associated with accidental injury?
 – Case reports of 3 children with household trauma
 • Localized to the posterior pole
 – 215 children – 2 with hemorrhages
 • Both in MVAs

• Can be caused by CPR
 – 117 children examined – 9 positive

• Not caused by seizures
Retinal Hemorrhages

- Neonates – examined at 1 week
 - Vacuum extraction higher than C section
 - 15% incidence
 - Resolved usually in 1 week – can take up to 6 weeks
- Purtscher retinopathy
 - Ecchymosis of the chest associated with RH
- Terson Syndrome
 - Vitreous hemorrhage associated with subarachnoid hemorrhage
Thank You